The statment $ \sim \left( {p \leftrightarrow \sim q} \right)$ is
Equivalent to $p \leftrightarrow q$
'Equivalent to $ \sim p \leftrightarrow q$
A tautalogy
A fallacy
The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to :
Which Venn diagram represent the truth of the statement“No policeman is a thief”
The negation of the statement
"If I become a teacher, then I will open a school", is
The contrapositive of $(p \vee q) \Rightarrow r$ is
The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to